Introduction to Computer Science

Computer Networks

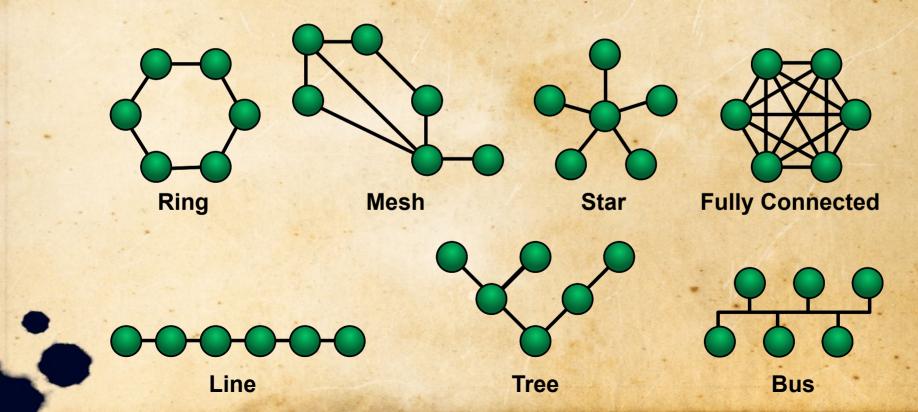
Open Systems Interconnection (OSI) Model

Layers 1 and 2: Ethernet

Lecture Contents

- OSI Layers
- Network Topologies
- Ethernet
 - Coaxial: 10 Base 2, 10 Base 5
 - Fiber: 10 Base F
 - Twisted Pair: 10, 100, 1000, ... Base T.

OSI Model Layers


- Seven Layers
 - Physical
 - Data Link
 - Network
 - Transport
 - Session
 - Presentation
 - Application

Physical Layer

- Lowest layer of the OSI model
- Transmission of raw bits over a physical medium
 - Digital over analog
 - Copper, fiber optics, electromagnetic waves
- Electrical, mechanical, procedural
 - Shapes and properties of connectors and cables
 - Frequencies (electromagnetic spectrum frequency allocation), bandwidth
 - Signal strength
 - Coding system (synchronization, carrier sense, collision detection)
- Examples: PCI Express, 802.11 WiFi, USB, Bluetooth, Ethernet, NFC, SONET, 5G, X10, LVDS

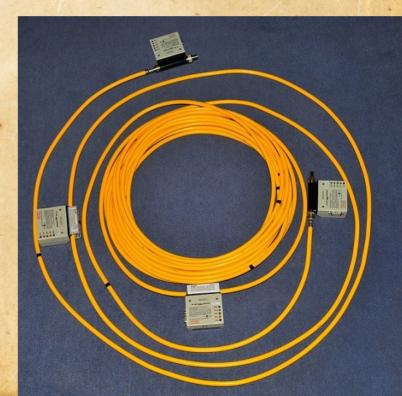
Network Topologies

Memorize these. What topology is the internet?

Ethernet Physical Layer

- Standard: IEEE 802.3
- Complements the MAC layer and logical link layer

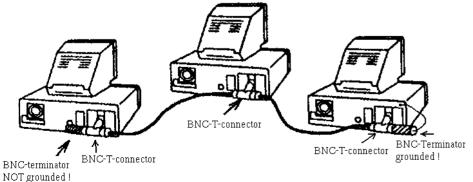
Background: 10Base___


- 10Mbps
- Baseband (not modulated)
- Manchester encoding
- Physical Connections:
 - 10Base5: original thick coaxial cable, up to 500m
 - 10Base2: thin coaxial cable, up to 185m
 - 10Base-T: twisted pair
 - 10Base-F: fiber

10Base5 "Thick Ethernet"

- First commercially available ethernet, IEEE 802.3-1983 (obsolete 9/2003)
- Thick coaxial cable (9.5mm)
- Bus topology

Media Attachment Unit (MAU) (using vampire taps)

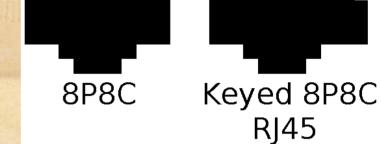


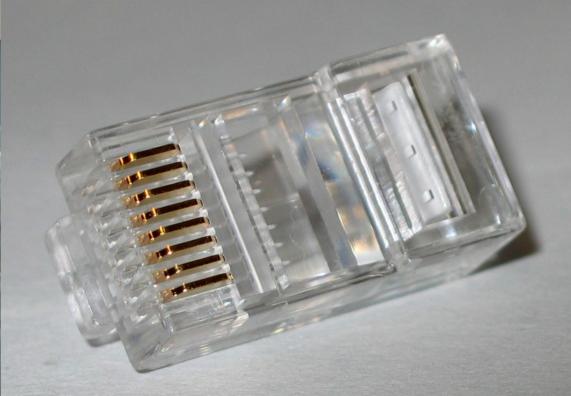
10Base2: Thin Ethernet; Cheapernet

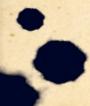
- Specification: IEEE 802.3a-1988 (obsolete 9/2011)
- Bus topology
 - Failure at any point tends to prevent all communication
- BNC connectors
 - T connectors direct to NIC
 - Bus must be terminated (reflection=collision)

10Base-F

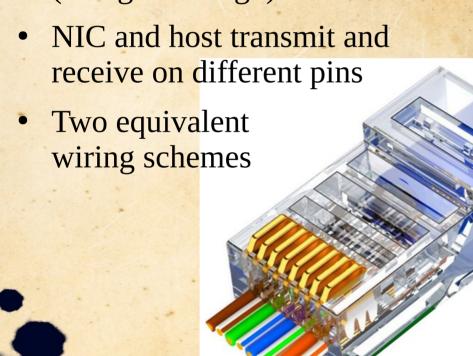
- Specification: IEEE 802.3d-1987; 802.3j-1993 (largely obsolete)
- Two strands of multimode fiber 62.5/125µm (full duplex)
- 1000m or longer

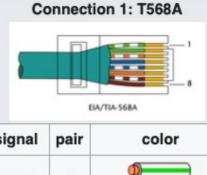


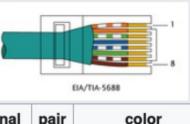



10Base-T

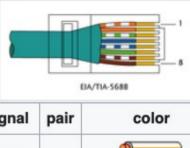
- 8 position 8 contact (8P8C) connector
 - Not actually RJ45





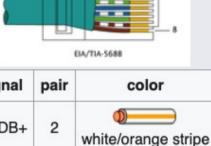


10Base-T


Same wiring on both ends (straight through)

-		8
signal		color
BI_DA+	3	

Connection 2: T568B


		BIA/TIA-568A	1
ignal	pair	color	sign
I_DA+	3	white/green stripe	BI_D

blue solid

orange solid

white/brown stripe

brown solid

2

3

4

Pin

3

6

8

BI DB+

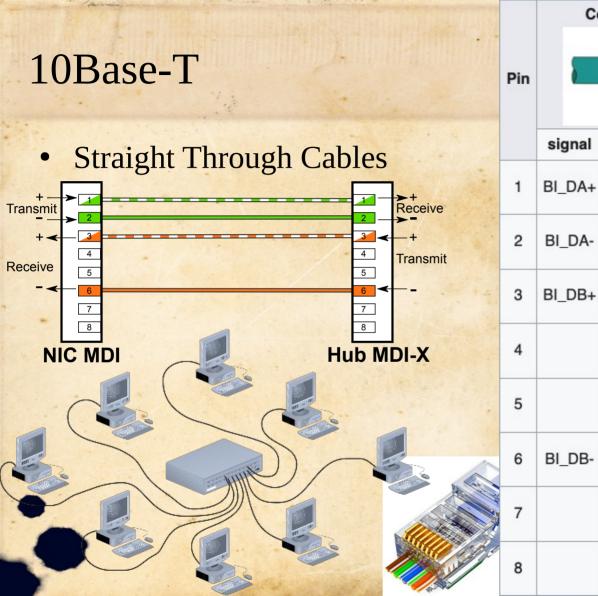
BI_DB-

white/blue stripe

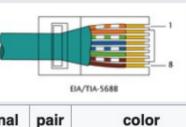
green solid

white/brown stripe

brown solid


orange solid

4


BI DA+

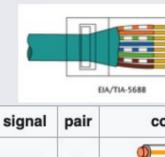
EIA/TIA-568A pair color

Connection 1: T568A

orange solid

white/green stripe

blue solid

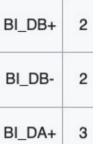

white/blue stripe

green solid

white/brown stripe

brown solid

Connection 2: T568B



2

4

4

BI_DA-

3

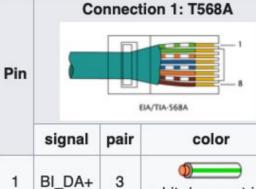
4

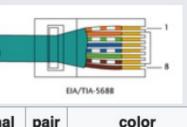
4

white/orange stripe blue solid

white/blue stripe

orange solid


white/brown stripe


brown solid

10Base-T

- Crossover Cables
 - 10, 100Base-T use only 2 pairs
 - Other lines may be used for telephone or other purpose
 - Not necessary for modern

	dev	ices due	to "Aut	o MDI-	X"
	(Med	dium-Depen	dent Inter	face)	
+ — Transmit + ← Receive	2 4 5 6 7 8			2 3 4 5 6 7 8	Transmit Receive
NI	C MD	-	N. Carlot	NIC N	IDI

white/orange stripe

orange solid

white/green stripe

blue solid

white/blue stripe

green solid

white/brown stripe

brown solid

Connection 2: T568B

signal p	air

2

2

3

3

4

4

BI_DB+

BI DB-

BI_DA+

BI DA-

BI_DA+

green solid

white/orange stripe

blue solid

white/blue stripe

orange solid

white/brown stripe

brown solid

white/green stripe 2 BI DA-3

2

2

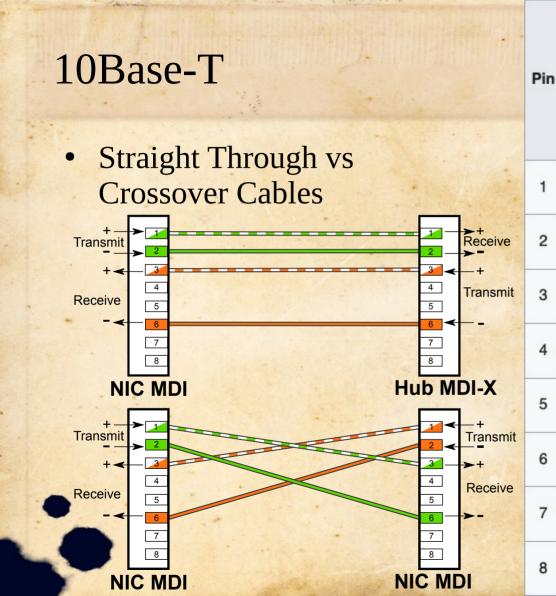
4

4

3

4

5

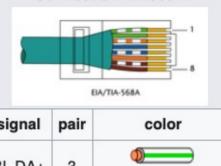

6

7

8

BI DB+

BI DB-


BI DB+

BI_DB-


2

4

4



Connection 1: T568A

Connection 2: T568B

orange solid

white/green stripe

blue solid

white/blue stripe

green solid

white/brown stripe

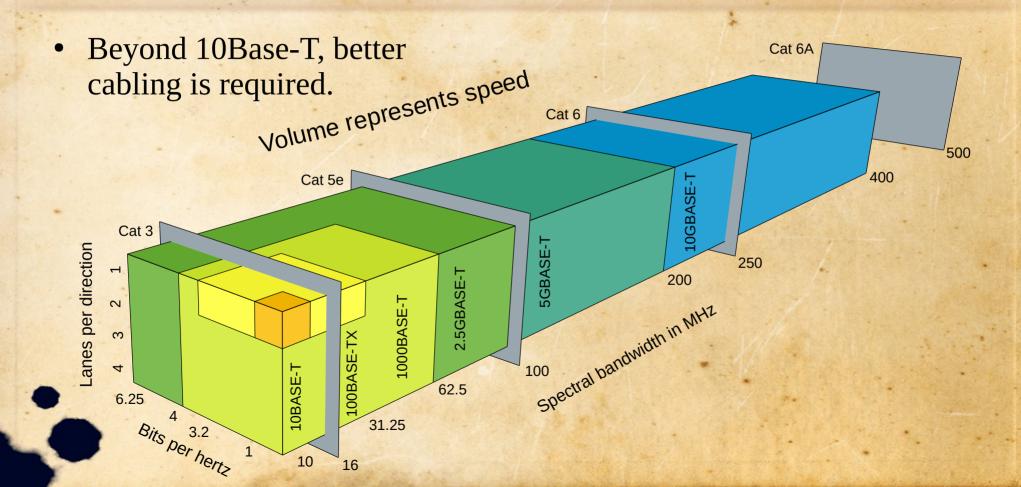
brown solid

BI DB-BI DA+

orange solid

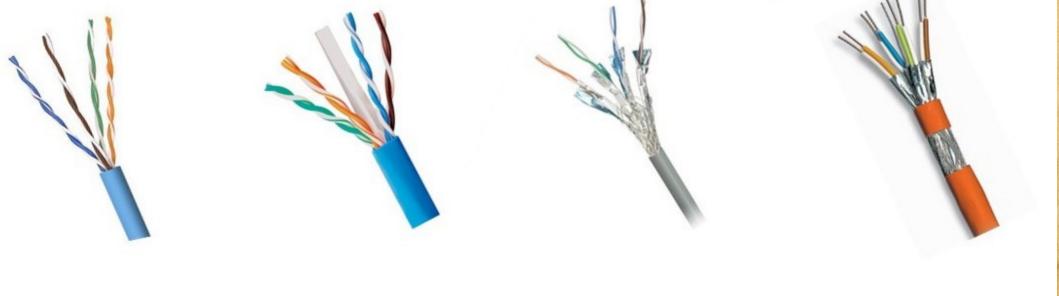
white/brown stripe

brown solid


3

4

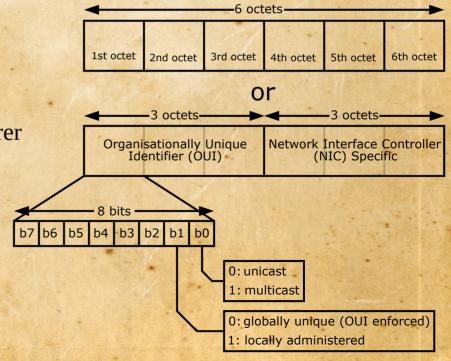
4


BI_DA-

Ethernet Twisted Pair Cable Categories

Ethernet Twisted Pair Cable Categories

Beyond 10Base-T, better cabling is required.


Cat5e Cat6 Cat6a Cat7

Media Access Control (MAC) Addresses

- Unique identifier for a particular Network Interface Controller (NIC)
 - Hardcoded into the hardware of each NIC
 - 48 bits 6 bytes → 12 digits in hex FF:FF:FF:FF:FF

Media Access Control (MAC) Addresses

- Unique identifier for a particular *Network Interface Controller* (NIC)
 - 48 bits: FF:FF:FF:FF:FF
 - Manufacturer's code (*Organizationally Unique Identifier*, **OUI**)
 - Remaining 3 octets assigned by manufacturer
 - 16 million MAC addresses each
 - Locally administered addresses (LAA; versus universal UAA)
 - Override burned-in addresses
 - 2nd LSB of first byte set to 1

Media Access Control (MAC) Addresses

- Unique identifier for a particular Network Interface Controller (NIC)
 - Hardcoded into the hardware of each NIC
 - 48 bits 6 bytes → 12 digits in hex FF:FF:FF:FF:FF
 - Target lifetime: until 2080
 - MAC-48 was just ethernet; EUI-48 ethernet and other (i.e.: bluetooth)
 - IEEE encourages EUI-64 for non-ethernet applications

Layer	Preamble	Start frame delimiter (SFD)	MAC destination	MAC source	802.1Q tag (optional)	Ethertype (Ethernet II) or length (IEEE 802.3)	Payload	Frame check sequence (32-bit CRC)	Interpacket gap (IPG)	
	7 octets	1 octet	6 octets	6 octets	(4 octets)	2 octets	46-1500 octets	4 octets	12 octets	
Layer 2 Ethernet frame	(not part	of the frame)		← 64–1522 octets →						
Layer 1 Ethernet packet & IPG				← 72–1530 octets →						

- Physical later framing
 - What might the preamble be for?

Preamble and SFD representations as bits, decimal, bytes, and nibbles

Representation					5	6-bit	(7-byt	te) Pre	eamble	е					SFD	byte
uncoded on-the-wire bit pattern transmitted from left to right (used by Ethernet variants transmitting serial bits instead of larger symbols) ^[1] :sections 4.2.5 and 3.2.2	1010	1010	1010	1010	1010	1010	1010	1010	1010	1010	1010	1010	1010	1010	1010)1011
decimal in Ethernet LSb-first ordering ^[1] :sections 3.2.2,3.3 and 4.2.6	85		85	85 85			85		85		85		85		213	
hexadecimal LSb-first bytes for 8-bit wide busses (GMII bus for Gigabit Ethernet transceivers)	0x55		0x55		0x55		0x55	•	0x55		0x55		0x55		0xD5	5
hexadecimal LSb-first nibbles for 4-bit wide busses (MII bus for Fast Ethernet or RGMII for gigabit transceivers)	0x5	0x5	0x5	0x5	0x5	0x5	0x5	0x5	0x5	0x5	0x5	0x5	0x5	0x5	0x5	0xD

- Physical later framing
 - Preamble is for clock synchronization
 - Start Frame Delimiter signals end of preamble.

Preamble and SFD representations as bits, decimal, bytes, and nibbles

Representation		56-bit (7-byte) Preamble											SFD	byte		
uncoded on-the-wire bit pattern transmitted from left to right (used by Ethernet variants transmitting serial bits instead of larger symbols) ^[1] :sections 4.2.5 and 3.2.2	1010	1010	1010	1010	1010	1010	1010	1010	1010	1010	1010	1010	1010	1010	1010)1011
decimal in Ethernet LSb-first ordering ^{[1]:sections} 3.2.2,3.3 and 4.2.6		85 8			85		85		85		85		85		213	
hexadecimal LSb-first bytes for 8-bit wide busses (GMII bus for Gigabit Ethernet transceivers)	0x55		0x55		0x55		0x55		0x55		0x55		0x55		0xD5	5
hexadecimal LSb-first nibbles for 4-bit wide busses (MII bus for Fast Ethernet or RGMII for gigabit transceivers)	0x5	0x5	0x5	0x5	0x5	0x5	0x5	0x5	0x5	0x5	0x5	0x5	0x5	0x5	0x5	0xD

- Minimum frame size 64 bytes (layer 2)
 - Minimum overhead: 18
 - So... minimum payload 46 bytes (octets padded if less data to be sent)

Layer	Preamble	Start frame delimiter (SFD)	MAC destination	MAC source	802.1Q tag (optional)	Ethertype (Ethernet II) or length (IEEE 802.3)	Payload	Frame check sequence (32-bit CRC)	Interpacket gap (IPG)	
	7 octets	1 octet	6 octets	6 octets	(4 octets)	2 octets	46-1500 octets	4 octets	12 octets	
Layer 2 Ethernet frame	(not part	of the frame)		·	←	64–1522 octets →			(not part of the frame)	
Layer 1 Ethernet packet & IPG				← 72–1530 octets →						

- Ethertype
 - <= 1500 means length
 - 1536 65535 is EtherType (what protocol is encapsulated)

Layer	Preamble	Start frame delimiter (SFD)	MAC destination	MAC source	802.1Q tag (optional)	Ethertype (Ethernet II) or length (IEEE 802.3)	Payload	Frame check sequence (32-bit CRC)	Interpacket gap (IPG)	
	7 octets	1 octet	6 octets	6 octets	(4 octets)	2 octets	46-1500 octets	4 octets	12 octets	
Layer 2 Ethernet frame	(not part	of the frame)		·	←	64–1522 octets →			(not part of the frame)	
Layer 1 Ethernet packet & IPG				← 72–1530 octets →						

- Ethertype
 - <= 1500 means length
 - 1536 65535 is EtherType (what protocol is encapsulated)
 - Inter-packet Gap (IPG) of 96 bits, and valid FCS then used to delineate packet

Layer	Preamble	Start frame delimiter (SFD)	MAC destination	MAC source	802.1Q tag (optional)	Ethertype (Ethernet II) or length (IEEE 802.3)	Payload	Frame check sequence (32-bit CRC)	Interpacket gap (IPG)	
	7 octets	1 octet	6 octets	6 octets	(4 octets)	2 octets	46-1500 octets	4 octets	12 octets	
Layer 2 Ethernet frame	(not part	of the frame)		← 64–1522 octets →						
Layer 1 Ethernet				← 7	72–1530 octe	ts →			← 12 octets →	

- Frame Check Sequence
 - A 32-bit CRC

Layer	Preamble	Start frame delimiter (SFD)	MAC destination	MAC source	802.1Q tag (optional)	Ethertype (Ethernet II) or length (IEEE 802.3)	Payload	Frame check sequence (32-bit CRC)	Interpacket gap (IPG)	
	7 octets	1 octet	6 octets	6 octets	(4 octets)	2 octets	46-1500 octets	4 octets	12 octets	
Layer 2 Ethernet frame	(not part	of the frame)		← 64–1522 octets →						
Layer 1 Ethernet packet & IPG				← 72–1530 octets →						

Address Resolution Protocol (ARP)

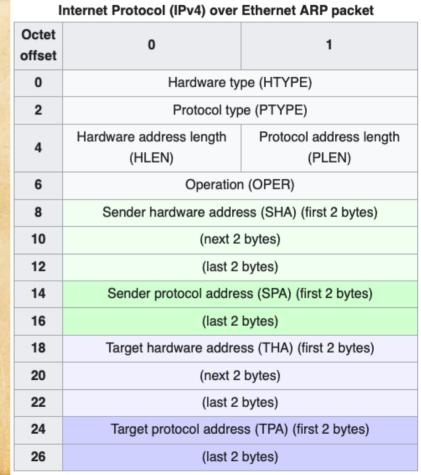
- Used for discovering the *data link* layer (layer 2) address for a layer 3 address
 - ARP frame is sent requesting the network layer (e.g.: IPv4) address
 - For ethernet, EtherType 0x0806 is used to identify an ARP frame
 - Frame is broadcast(MAC FFFF: FFFF)

Octet offset	0	1
0	Hardware ty	pe (HTYPE)
2	Protocol typ	e (PTYPE)
4	Hardware address length (HLEN)	Protocol address length (PLEN)
6	Operation	n (OPER)
8	Sender hardware addre	ess (SHA) (first 2 bytes)
10	(next 2	bytes)
12	(last 2	bytes)
14	Sender protocol addre	ss (SPA) (first 2 bytes)
16	(last 2	bytes)
18	Target hardware addre	ss (THA) (first 2 bytes)
20	(next 2	bytes)
22	(last 2	bytes)
24	Target protocol addres	ss (TPA) (first 2 bytes)
26	(last 2	bytes)

Internet Protocol (IPv4) over Ethernet ARP packet

Address Resolution Protocol (ARP)

- Fields
 - HTYPE: data link protocol (ethernet=1)
 - PTYPE: network protocol (IPv4=0x0800)
 - HLEN: length of data link address in octets (ethernet=6)
 - PLEN: length of network address in octets (IPv4=4)
 - Operation: 1 request, 2 reply


Octet offset	0	1
0	Hardware type (HTYPE)	
2	Protocol type (PTYPE)	
4	Hardware address length (HLEN)	Protocol address length (PLEN)
6	Operation (OPER)	
8	Sender hardware address (SHA) (first 2 bytes)	
10	(next 2 bytes)	
12	(last 2 bytes)	
14	Sender protocol address (SPA) (first 2 bytes)	
16	(last 2 bytes)	
18	Target hardware address (THA) (first 2 bytes)	
20	(next 2 bytes)	
22	(last 2 bytes)	
24	Target protocol address (TPA) (first 2 bytes)	
26	(last 2 bytes)	

Internet Protocol (IPv4) over Ethernet ARP packet

Address Resolution Protocol (ARP)

- Fields
 - HTYPE: data link protocol (ethernet=1)
 - PTYPE: network protocol (IPv4=0x0800)
 - HLEN: length of data link address in octets (ethernet=6)
 - PLEN: length of network address in octets (IPv4=4)
 - Operation: 1 request, 2 reply
 - Four **Addresses**: you figure these out...

- What does a host (or router) do if it needs to send an IP packet with an unknown destination MAC address?
- How does it differ if the IP address is not in the local network?
 (And how would the host know?)

- What does a host (or router) do if it needs to send an IP packet with an unknown destination MAC address?
 - It broadcasts an ARP request (asking "Who has this IP address?")
 - The device with the matching IP address responds with an *ARP reply* providing it's MAC address
 - Sender updates its ARP table
 - If no response, the *ARP request* will timeout/retry, returning an error to the network layer, specifying the host is unreachable

- How do ARP requests differ if the IP address is not in the local network? (And how would the host know?)
 - The host checks the network's *subnet mask* to determine if the address is local
 - If local, the ARP request is performed
 - If not local... where is the packet sent?

- How do ARP requests differ if the IP address is not in the local network? (And how would the host know?)
 - The host checks the network's *subnet mask* to determine if the address is local
 - If local, the ARP request is performed
 - If not within the subnet, the packet is sent to the MAC address of the default gateway
 - If the MAC address of the *default gateway* is not in the ARP table, an ARP request will be made for its MAC
 - The layer 2 will be addressed to the *default gateway* while the IP address will be addressed to the distant host

Introduction to Computer Science

Computer Networks

Open Systems Interconnection (OSI) Model

Layers 1 and 2: Ethernet

